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Flame holes and flame disks in a laminar axisymmetric counterflow configuration are
numerically investigated for unity Lewis number, with the strain rate as the control
parameter. The temporal evolution of the topological structure of flame holes and
flame disks is described in detail for different representative strain rates. It is found
that corresponding to each given strain rate, there exists a critical hole (disk) radius
rc that separates the shrinking and expanding hole (disk) regimes. The value of rc

decreases monotonically with the increase (decrease) of strain rate and reaches a finite
minimum at the extinction (ignition) limit of the strain rate, which indicates that one
cannot ignite a mixing layer by an infinitesimal energy source, nor can one quench a
diffusion flame by making an infinitesimal extinction hole on it. An examination of
the phase diagrams of flame holes (disks) justifies the existence of a unique edge-flame
velocity vf as a smooth continuous function of the hole (disk) radius rf in the entire
range 0 < rf < ∞, with the strain rate (or equivalently, Damköhler number) as a
parameter. For the flame hole case, it is found that in the final stage of collapse
of a hole, the edge-flame velocity is essentially proportional to the inverse of the
hole radius, except when the strain rate is very close to the extinction limit. Flame
interactions induced by overlapping of pre-heat zones are mainly responsible for
the acceleration of the edge-flame velocity when the hole radius approaches zero, and
it is further enhanced by the focusing effects of hole curvature in the plane of the
stoichiometric surface. For the flame disk, the increasing heat loss rate plays a major
role on the acceleration of the shrinking speed when the disk radius approaches
zero.

1. Introduction
Local extinction and re-ignition are ubiquitous phenomena in turbulent diffusion

flames. One important approach to modelling turbulent diffusion flames is the flamelet
model, in which turbulent diffusion flames are described as consisting of an ensemble
of stretched laminar flame sheets, or flamelets. The concept of a flamelet was first
proposed by Williams (1975) and later developed by Peters (1983) to study the local
quenching and re-ignition behaviour in turbulent diffusion flames. According to Peters
(1983), local extinction and re-ignition of a turbulent diffusion flame are controlled by
the local Damköhler number, which may be constructed based on the dissipation rate
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Figure 1. Schematic diagram of the structure of an extinction hole on an axisymmetric
counterflow diffusion-flame sheet.

of a scalar – the mixture fraction. The scalar dissipation rate is directly proportional
to the strain rate. If the scalar dissipation rate is locally above a critical value,
extinction occurs in the neighbourhood of that point, appearing as an ‘extinction
hole’, or synonymously, a ‘flame hole’ on the flame sheet. Once the scalar dissipation
rate returns to below the critical value in the vicinity of the extinction hole, the
surrounding flame elements may propagate inward to re-ignite the extinguished area.
Since in a turbulent flow field the scalar dissipation rate is a stochastic variable, it
leads to a time-varying random distribution of extinction holes on turbulent diffusion
flame sheets. Such local quenching and re-ignition phenomena have been observed
(see e.g. Schefer et al. 1994) in the laboratory using flame visualization techniques.
In recent years, numerous numerical works have been devoted to the study of such
local extinction and re-ignition events in turbulent diffusion flames using the flamelet
formulation (Mauss, Keller & Peters 1990; Pitsch & Fedotov 2001; Pitsch, Cha &
Fedotov 2003) or conditional moment closure (CMC) modelling (Cha, Kosaly &
Pitsch 2001; Cha & Pitsch 2002; Kim, Huh & Bilger 2003).

There is another phenomenon, ‘flame disks’, which is closely related to ‘flame holes’
in turbulent diffusion-flames. A flame disk is a small burning element that may serve as
an ignition source along the stoichiometric surface to re-ignite the extinguished area.
Domingo & Vervisch (1996) investigated the ‘auto-ignition’ process of non-premixed
turbulent mixtures from an ignition kernel using two-dimensional direct numerical
simulations. Their work provides a description of the cross-sectional structure of flame
disks in a turbulent environment.

In the context of the laminar flamelet model, the investigation of flame holes
and flame disks in a laminar flow environment may be of underlying significance
for turbulent flame studies. Figure 1 shows a schematic diagram of the topological
structure of a flame hole on a laminar axisymmetric counterflow diffusion-flame
sheet. A characteristic structure, the edge flame, develops at the interface between the
burning and extinguished regions, as shown in figure 1 in cross-section. Depending
on the strain rate, the edge flame may exhibit different structural features. When
the strain rate is relatively small, the edge flame is characterized by a tribrachial
structure – two curved partially premixed flame branches joined with the diffusion
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flame branch at a single point – hence in this context the edge flame is also called
a ‘tribrachial flame’ or ‘triple flame’. This is the case shown in figure 1. However, if
the strain rate parameter is increased, the two partially premixed branches gradually
‘fold’ onto the diffusion flame branch, eventually degenerating into a simple blunt
edge. The most important dynamical characteristic of the edge flame is that it has
an ability to propagate, with a speed either positive (ignition front) or negative
(extinction front or failure wave), depending on the strain rate and the curvature of
the edge. Straight (zero curvature on the diffusion-flame plane) edge flames have been
studied extensively in the literature. The first report of laboratory observations of a
triple flame is attributed to Phillips (1965). In recent years, a number of experimental
(Kioni et al. 1993; Lee & Chung 1997; Plessing et al. 1998; Shay & Ronney 1998;
Ko & Chung 1999) and numerical (Ruetsch, Vervisch & Liñán 1995; Domingo &
Vervisch 1996; Favier & Vervisch 1998; Echekki & Chen 1998; Im & Chen 1999)
investigations, in both laminar and turbulent flow situations, have been reported.
Various theoretical works (Buckmaster & Matalon 1988; Dold 1989; Hartley & Dold
1991; Buckmaster 1996, 1997; Daou & Liñán 1998; Ghosal & Vervisch 2000) have
also been devoted to the study of such two-dimensional triple (or edge) flames. A
recent review of edge flames was given by Buckmaster (2002).

In turbulent flows flame edges are more likely to be curved lines on the
stoichiometric surface. However, it was only recently that such curved edge flames
began to receive much attention. The first theoretical investigation of the effects of
curvature on the edge flame is due to Nayagam, Balasubramaniam & Ronney (1999).
They extended Buckmaster’s one-dimensional edge-flame model (Buckmaster 1996) to
an axisymmetric diffusion-flame hole of finite radius. Their analysis showed that for
‘free’ flame holes (without a heat sink at the axis), at small Damköhler number, the
holes either grow (as an extinction wave) or shrink (as an ignition wave) depending
on whether the initial hole radius is above or below a certain critical value; for large
Damköhler number, the holes shrink for any initial hole radius. They also obtained
a closed-form expression for the edge-flame velocity as a function of the hole radius
and the Damköhler number, by introducing an approximate quasi-steady assumption.
In an experimental investigation of diffusion-flame disks, Nayagam & Williams
(2001) found good agreement of the measured collapse rates with the theoretical
predictions. Papas & Tomboulides (2000) performed experimental and numerical
investigations of diffusion flames in a counterflow configuration. They reported the
existence of two types of flame structure – a disk-shaped diffusion flame and an
annular-shaped flame – and observed the hysteretic transition of these two types of
flame, depending on the strain rate and the overall activation energy. Santoro, Liñán &
Gomez (2000) performed an experimental investigation on the propagation of edge
flames in counterflow mixing layers. They observed the existence of an annular edge
flame structure by creating a flame hole on the diffusion flame sheet, and found that
the edge flame quickly propagated in the radial direction and eventually stabilized as
a standing triple flame. The measurement results demonstrated a correlation of the
edge-flame propagation speed with the strain rate (or the Damköhler number).

Buckmaster & Jackson (2000) numerically investigated the flame hole and flame
disk problems using a simple thermal–diffusive model in the absence of a straining
velocity field. They studied how the shrinkage or expansion of a flame hole (disk)
depends on the instantaneous hole (disk) radius and the Damköhler number, and
for a given hole (disk) radius, found a critical Damköhler number at which the edge
is stationary. They further examined the edge travelling speeds of flame holes and
disks and concluded that for shrinking holes and disks, a unique edge propagation
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speed may be defined as a function of the instantaneous hole (disk) radius for given
combustion parameters.

Very recently, Pantano & Pullin (2003) studied the collapse dynamics of a diffusion
flame hole with unity Lewis number and in the presence of a counterflow velocity
field, also by using Buckmaster’s one-dimensional edge-flame model. Their analysis
showed that the final stage of flame hole collapse is determined by a dominant balance
between the time rate of change of temperature and diffusion, and the effects of side
losses and advection turn out to be higher-order effects. As a result, to leading order,
the size of the flame hole shrinks according to a 1/2-power of time remaining to
collapse in this final stage. This 1/2-power law was also obtained in our investigation
of the head-on collision process of two planar premixed flames in the final stage
before their mutual annihilation (Lu & Ghosal 2003).

In this paper, we will conduct a detailed numerical investigation of flame holes
and flame disks in a laminar axisymmetric counterflow configuration. For simplicity,
we will only consider the unity Lewis number case. Our work differs from that of
Buckmaster & Jackson (2000) mainly in two aspects. First, the effects of flow fields
are incorporated; secondly, the temporal evolution of the topological structure of
flame holes (disks) will be explored for different representative strain rates. This will
help elucidate the underlying mechanism that governs the dynamical characteristics of
flame holes (disks) and how the behaviour of the system changes as the strain rate (and
therefore the Damköhler number) is varied over the entire range of values between
the ignition and extinction limits. Then, we will concentrate on the investigation of
the dynamics of the flame holes and flame disks in the entire interesting range of
strain rate, in an effort to gain an insight into the effects of hole (disk) curvature and
strain rate on the dynamical properties of flame holes (disks).

The paper is organized as follows. We formulate the problem in the next section.
Basic governing equations are given and then non-dimensionalized by choice of
appropriate dimensionless variables. In § 3 we discuss the numerical methods we use
to solve the problem. The properties of a steady flame sheet are first studied in § 4,
from which the interesting range of parameters is identified and four representative
cases are chosen for further study. Then, the results for flame holes and flame disks
are presented in § 5 and § 6, respectively. Finally, the main results of the paper are
summarized in § 7.

2. Formulation
We consider a three-dimensional incompressible axisymmetric counterflow con-

figuration, with fuel and oxidizer supplied from opposite sides, respectively. A
cylindrical coordinate system (r̃ , φ, z̃) is adopted, with the origin O at the stagnation
point and the z̃-axis pointing towards the fuel side, as shown in figure 1. The
counterflow velocity field has the representation (ũr = ar̃, ũz = −2az̃), where (ũr , ũz)
are the radial and axial velocity components, and a is the strain rate parameter.
Global Arrhenius chemistry is assumed so that the reaction rate

ω = BY0Y1 exp

{
− E

RT

}
(2.1)

where B is a constant pre-exponential factor, E is the activation energy of the reaction,
R is the universal gas constant, T is the temperature of the mixture, and Yi(i = 0, 1)
are the mass fractions of the fuel and oxidizer, respectively. We assume that the fuel
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and oxidizer are diluted by an inert species, so that the heat released by chemical
reaction is small compared with the thermal energy of the mixture. Thus, we adopt
the constant-density approximation. Furthermore, the thermal diffusivity, specific heat
and density of the mixture are approximated by those of the inert component, which
are constants and denoted by DT , Cp and ρ, respectively. The conservation equations
for energy and species are

∂T

∂t̃
+ ar̃

∂T

∂r̃
− 2az̃

∂T

∂z̃
= DT

[
1

r̃

∂

∂r̃

(
r̃
∂T

∂r̃

)
+

∂2T

∂z̃2

]
+

Q

ρCp

ω, (2.2)

∂Yi

∂t̃
+ ar̃

∂Yi

∂r̃
− 2az̃

∂Yi

∂z̃
= Di

[
1

r̃

∂

∂r̃

(
r̃
∂Yi

∂r̃

)
+

∂2Yi

∂z̃2

]
− νiWi

ρ
ω. (2.3)

Here Q is the heat released per reaction, Di are the mass diffusivities, νi are the
stoichiometric coefficients, and Wi are the molecular weights.

The boundary conditions are now specified. In the radial direction, all dependent
variables are axisymmetrical and tend to a homogeneous state when r̃ → ∞, so we
have

∂T

∂r̃

∣∣∣∣
r̃=0,∞

=
∂Yi

∂r̃

∣∣∣∣
r̃=0,∞

= 0. (2.4)

In the transverse direction, we assume that the fuel and oxidizer have the same
unburned temperature Tu and unburned mass fractions Y0u and Y1u, respectively. In
terms of symbols, the transverse boundary conditions are

T (z̃ → ±∞) = Tu, (2.5)

Y0(z̃ → +∞) = Y0u, Y0(z̃ → −∞) = 0, (2.6)

Y1(z̃ → +∞) = 0, Y1(z̃ → −∞) =Y1u. (2.7)

Once a steady diffusion flame is established, the reaction sheet is located at z̃ = z̃s

which defines the stoichiometric plane. In the absence of reaction (ω = 0), (2.3) admits
the steady solutions

Y0 = Y0(z̃) = 1
2
Y0u

[
1 + erf

(√
a

D0

z̃

)]
, (2.8a)

Y1 = Y1(z̃) = 1
2
Y1u

[
1 − erf

(√
a

D1

z̃

)]
. (2.8b)

For simplicity we further assume that the fuel and oxidizer are equi-diffusive, i.e. D0 =
D1 = D. Thus, according to the stoichiometric relation Y0(z̃s)/Y1(z̃s) = ν0W0/ν1W1,
(2.8 a, b) can be combined to solve for z̃s:

z̃s =

√
D

a
erf−1

[
1 − σ

1 + σ

]
, (2.9)

where σ = Y0uν1W1/Y1uν0W0. For the purpose of the numerical simulations presented
in this paper, we will assume σ = 1 so that z̃s = 0. Thus, in this case the reaction
sheet is coincident with the stagnation plane.

To non-dimensionalize the conservation equations (2.2) and (2.3), we choose the
following units for velocity, length and time respectively:

v0 =

[
2

β3

BDT ν1W1

ρ
Y0u exp

{
− E

RTb

}]1/2

, L0 = DT /v0, t0 = DT /v2
0 . (2.10)
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Here Tb is the adiabatic flame temperature, and β = E(Tb − Tu)/RT 2
b is the Zeldovich

number; v0 is the classical leading-order asymptotic result for the propagation velocity
of a planar premixed flame propagating in a stoichiometric mixture. The dimensionless
variables are defined by

t = t̃/t0, r = r̃/L0, z = z̃/L0, (2.11)

θ = (T − Tu)/(Tb − Tu), yi = Yi/Yiu. (2.12)

According to the definition of the heat of reaction we then have

Cp(Tb − Tu)

(
ν0W0

Y0u

+
ν1W1

Y1u

)
= Q, (2.13)

which determines the adiabatic flame temperature Tb. With the constant-density
approximation, the heat release parameter α = (Tb − Tu)/Tb � 1. Consequently, in
non-dimensional form, the conservation equations (2.2) and (2.3) become

∂θ

∂t
+ λr

∂θ

∂r
− 2λz

∂θ

∂z
=

1

r

∂

∂r

(
r
∂θ

∂r

)
+

∂2θ

∂z2
+ β3y0y1 exp{−β(1 − θ)}, (2.14)

∂yi

∂t
+ λr

∂yi

∂r
− 2λz

∂yi

∂z
=

1

Le

[
1

r

∂

∂r

(
r
∂yi

∂r

)
+

∂2yi

∂z2

]
− 1

2
β3y0y1 exp{−β(1 − θ)},

(2.15)

where Le = DT /D is the Lewis number, and λ = aDT /v2
0 is the dimensionless strain

rate parameter.
In this paper we study only the unity Lewis number case. Hence, the fuel mixture

fraction

Z =
1 + y0 − y1

2
(2.16)

satisfies

∂Z

∂t
+ λr

∂Z

∂r
− 2λz

∂Z

∂z
=

1

r

∂

∂r

(
r
∂Z

∂r

)
+

∂2Z

∂z2
, (2.17)

which admits a steady solution

Z = 1
2
[1 + erf(

√
λ z)]. (2.18)

Since Lewis numbers are unity, y0 and y1 may be expressed as functions of Z and θ

using the Shvab–Zeldovich reduction, so that (2.14) becomes

∂θ

∂t
+ λr

∂θ

∂r
− 2λz

∂θ

∂z
=

1

r

∂

∂r

(
r
∂θ

∂r

)
+

∂2θ

∂z2

+ β3
(
Z − 1

2
θ
) (

1 − Z − 1
2
θ
)
exp{−β(1 − θ)}. (2.19)

The boundary conditions (2.4) and (2.5) now take the dimensionless form

∂θ

∂r

∣∣∣∣
r=0,∞

= 0, θ(z → ±∞) = 0. (2.20)

Equations (2.18) and (2.19) together with the boundary conditions (2.20) and
appropriate initial conditions define the problem that we will be solving numerically
in this paper. The dimensionless parameters of interest are the strain rate λ and the
Zeldovich number β . The initial conditions are discussed in the next section.
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3. Method of solution
Equation (2.19) will be solved numerically using a finite difference method.

Without loss of generality, we will choose a fixed Zeldovich number β =16 in all
of the following simulations. Clearly, the temperature field θ is symmetrical with
respect to the stagnation plane z = 0, so it is sufficient to choose a two-dimensional
computational domain [0, rmax] × [0, zmax] with an adiabatic boundary condition
∂θ/∂z(z =0) = 0. The upper boundary zmax is chosen to be large enough such
that Z(zmax) ≈ 1. The boundary condition for temperature at z = zmax may then be
approximated by θ(zmax) = 0. The choice of zmax depends on the strain rate λ. The
radial boundary has been chosen as rmax = 20 in this paper, with Neumann boundary
condition ∂θ/∂r(r = rmax) = 0.

The computational domain is discretized by uniformly spaced grid points in both
the radial and transverse directions. Spatial derivatives are discretized by the sixth-
order compact finite difference scheme (Lele 1992). For time integration, a simple
forward Euler time stepping is used. Though less robust and accurate than, say,
the fourth-order Runge–Kutta method, the ease of implementation and speed of
calculations dictated our choice. In a similar calculation of colliding planar premixed
flames (Lu & Ghosal 2003), we have compared these two time integration methods;
the discrepancy turned out to be negligibly small. The initial conditions are specified
in the following manner. For the flame hole problem, suppose that a steady diffusion-
flame sheet has been established on the stagnation plane, we then artificially create
a circular extinction hole on the flame sheet with centre at the stagnation point and
initial hole radius ri; similarly for the flame disk problem, except that the ignited and
extinguished regions are interchanged. In terms of symbols, the initial conditions are

θ(z, r) =

{
0, 0 � r � ri

θs(z; λ), ri < r � rmax

for flame holes, (3.1a)

θ(z, r) =

{
θs(z; λ), 0 � r � ri

0, ri < r � rmax

for flame disks. (3.1b)

The calculation of θs(z; λ), which represents the temperature profile of a steady
diffusion flame for strain rate λ, is addressed in § 4.

4. The steady diffusion-flame sheet
For a steady axisymmetric counterflow diffusion flame, (2.19) reduces to the

following ordinary differential equation with respect to z:

d2θ

dz2
+ 2λz

dθ

dz
+ β3

(
Z − 1

2
θ
) (

1 − Z − 1
2
θ
)
exp{−β(1 − θ)} = 0 (4.1)

with boundary conditions on the computational domain [0, zmax]

dθ

dz

∣∣∣∣
z=0

= 0, θ(z = zmax) = 0. (4.2)

This is a nonlinear two-point boundary value problem with λ as a control parameter.
A shooting method has been used to obtain its solution. Equation (4.1) is first
transformed to two coupled first-order ordinary differential equations with θ and
dθ/dz as the two dependent variables. Then, for each λ, an appropriate left-hand
boundary value of temperature, θ(z = 0), which is also the maximum temperature
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Figure 2. The S-shaped response curve for an axisymmetric counterflow diffusion flame:
�, calculation data points; ——, the extinguished and ignited branches; – – – – –, the unstable
intermediate branch.

θmax

Case λ (ignited branch) vf ∞

A 0.00158 0.9865 0.9464
B 0.01 0.9758 0.7313
C 0.1 0.9360 0.1309
D 0.2 0.8962 −0.7186

Table 1. Four representative cases with strain rates within the extinction and ignition limits.

in the domain, is sought such that after integration of the system, the right-hand
boundary gives θ(zmax) = 0. The integration technique is a fifth-order Runge–Kutta
method with adaptive stepsize control. The maximum temperature θmax plotted against
the inverse of the strain rate, λ−1, is shown in figure 2. As can be seen, it is
the well-known S-shaped response curve. Two critical strain rates, λI ≈ 0.00158 and
λE ≈ 0.239, which correspond to ignition and extinction strain rates respectively, divide
the continuous S-curve into three branches – a lower extinguished branch, an upper
ignited branch, and an intermediate unstable branch.

The S-curve is the reference point of our investigation of the flame hole and flame
disk problem. As noted by Buckmaster & Jackson (2000), the edge of the flame hole
(disk) serves as a transition structure between the extinguished and ignited branches
of the S-curve, and it is the ability of the edge flame to propagate that determines
the dynamical properties of the flame hole (disk). In the following simulations, we
will choose four representative cases A–D within the interval between λI and λE , as
listed in table 1 and marked in figure 2. Also shown in table 1 is vf ∞, the edge-
flame propagation velocity when the hole (disk) radius rf approaches infinity, that
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is, the propagation velocity of a straight edge flame. It is seen that vf ∞ increases
with decreasing of the strain rate λ, and there exists a critical strain rate λc, which
is somewhere between 0.1 and 0.2 (between C and D in figure 2), at which vf ∞
vanishes. Thus, λc is the critical point between a deflagration front and a failure wave.
It should be emphasized that this is applicable only for a straight edge flame. As will
be seen later in § 5 and § 6, when the edge curvature effects are taken into account,
both deflagration fronts and failure waves can exist for any strain rate within the
interval [λI , λE].

For each of cases A–D, we will need to calculate the steady temperature profile
θs(z; λ) corresponding to the ignited branch. This is done by using a straightforward
relaxation method; equation (4.1) is transformed to an unsteady equation by adding
an unsteady term ∂θ/∂t on the left-hand side, then an appropriate guessed temperature
profile is chosen as the initial condition to iterate the unsteady equation until the
steady solution, θs(z; λ), is obtained.

5. Circular holes on a diffusion-flame sheet
We consider the axisymmetric counterflow diffusion flame with strain rate λ, and

suppose that on the flame sheet there is a circular extinction hole with centre at the
origin and hole radius ri . This corresponds to the initial condition defined by equation
(3.1a).

After a short transient time, the discontinuous temperature profile will evolve into
a smooth circular edge-flame front, which, depending on the strain rate λ and the size
of the hole, may propagate inward as an ignition front or outward as an extinction
front. In order to investigate the dynamical properties of the flame hole, one needs
to define the instantaneous location of the hole edge. Generally this definition is not
unique due to the finite size of the reaction zone. In their simulations, Buckmaster &
Jackson (2000) tracked the temperature contour and the edge location was identified
with the point where the temperature is 80% of the Burke–Schumann value. In this
paper, the instantaneous edge location rf (t) is identified with the radial coordinate of
the point P at which the reaction rate ω reaches its maximum. Clearly, P is always
located on the stagnation plane z = 0.

Figure 3 shows the instantaneous radial reaction rate profiles of flame holes on the
stagnation plane z =0 for four different strain rates, that is, cases A–D (cf. table 1
and figure 2). The existence of a well-defined reaction rate peak is apparent – though
less easily discernible for high strain rates (such as case D). Nevertheless the value of
r corresponding to the maximum of the reaction rate can still be uniquely identified.

5.1. Critical hole radius

The dynamical behaviour of the flame hole is determined by two parameters, the strain
rate λ and the instantaneous hole radius rf . The balance between heat generation
and diffusional heat losses is now complicated by the role of the hole curvature
effects and the counterflow velocity field. If the favourable effects dominate, the hole
edge-flame front will propagate inward to close the hole; otherwise the hole will
expand outward to enlarge the extinction area. For a fixed strain rate λ, there exists a
critical hole radius rc at which a balance is reached, characterized by a stationary hole
edge. The critical radius is an unstable bifurcation point that separates the shrinking
and expanding hole regimes. Figure 4 shows the critical hole radius rc for the entire
range of strain rates within the interval [λI , λE]. The method of determination of
the critical radius is described in § 5.3. Here, we only point out that rc increases
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Figure 3. Instantaneous radial reaction rate profiles of flame holes on the stagnation plane
z = 0 for cases A–D for the same value of the hole radius.
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Figure 4. The flame hole critical radius as a function of strain rate: �, from numerical simu-
lation data; ——, fourth-order polynomial fit; �, rc = vf ∞(λ)/λ; – – – – –, spline fit.

monotonically with decreasing of the strain rate, as seen in figure 4, and postpone a
detailed discussion of this issue to § 5.3.

5.2. Flame topology

The temporal evolution of a collapsing flame hole in its final stage, as represented by
the cross-sectional view of the isocontours of the reaction rate, is shown in figure 5.
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Figure 5. Temporal evolution of isocontours of reaction rate of a collapsing flame hole for
case B (cf. figure 2) – cross-sectional view.

The counterflow strain rate is λ = 0.01 corresponding to case B in table 1 and
figure 2. It can be clearly seen that the hole edge exhibits a triple flame structure in
cross-section, with its convex side pointing to the centre of the hole. As a result, the
hole edge is characterized by a saddle-like topological structure, associated with two
orthogonal curvatures: the curvature of the partially premixed front and the inverse
of the hole radius.

As can be seen from figure 5, the collapse of a flame hole can be divided into two
stages. The first is the collapsing stage in which the hole shrinks until the hole edge
converges to a point at the centre. We take this moment as the point of reference
of time, t = 0. The time preceding this moment (the collapsing stage) is taken as
negative. Next comes the post-collapse stage. The residual rich and lean premixed
edge flame fronts separate themselves immediately from the main diffusion flame to
form two flame isolas on two sides of the diffusion flame sheet. They then gradually
die out and a steady diffusion flame is established.

However, when the strain rate is relatively large, the collapsing flame hole may ex-
hibit qualitatively different features. Figure 6 shows the temporal evolution of a flame
hole for case C (λ = 0.1) when the flame is highly strained and close to the extinction
limit (cf. figure 2). As can be seen, unlike the previous case, the hole edge does not
have an apparent triple flame structure; instead, it degenerates into a simple blunt
edge. Accordingly, there is no clear post-collapse stage. The blunt hole edge shrinks
to the centre and then gradually flattens out.
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Figure 6. Temporal evolution of isocontours of reaction rate of a collapsing flame hole for
case C (cf. figure 2) – cross-sectional view.

5.3. Dynamics of flame holes

How does the hole edge travelling speed, −drf /dt = f (rf , λ), depend on the strain
rate λ and the instantaneous hole radius rf ? We attempt to determine the function
f (rf , λ) using our numerical simulations.

Recently, Pantano & Pullin (2003) employed Buckmaster’s one-dimensional edge-
flame model (Buckmaster 1996) to obtain an asymptotic solution for the evolution of
a shrinking flame hole edge in the limit of large activation energy. They concluded
that in the final stages of collapse, the flame hole shrinks according to a 1/2-power
of time remaining to collapse. That is, in our notation,

rf (t) =
√

−6.31982 t . (5.1)

The trajectories of a collapsing flame hole edge for cases A–D are shown in figure 7.
Equation (5.1) is plotted as the dashed line. As can be seen, the agreement between
the theory and our numerical results is excellent for small (case A) and moderate
(case B) strain rates (the hole edge possesses the triple flame structure), while for
high strain rates (cases C,D; the hole edge possesses simple blunt edge structure) the
agreement is less satisfactory.

Figure 8 shows the phase diagram of flame holes for cases A–D, represented by
the edge travelling speed, −ṙf (t), against the instantaneous hole radius rf (t). Follow-
ing Buckmaster & Jackson (2000), different initial hole radii ri for each strain rate
have been tested and it turns out that for a given strain rate, all of these phase curves
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2003). The circle symbol marks the location of the critical hole radius for case D.

collapse on to a unique curve f (rf , λ) after a short transient time. For each of the
cases, C and D, a pair of values for the initial hole radius was carefully chosen such
that after a short transient, one corresponds to a hole that is slightly smaller than
the critical hole radius rc and the other corresponds to a hole only slightly larger
than rc. The two phase curves evolve to two branches that close and expand the
hole, respectively. As can be clearly seen from figure 8, the collapsing and expanding
branches connect at the critical hole radius and constitute a smooth phase curve,
f (rf , λ). To determine the location of the critical hole radius, a data fitting of the
two branches in the vicinity of rc has been employed and the intersection point of the
connected smooth phase curve and the ṙf = 0 line locates the critical hole radius.

Let us define an edge-flame propagation velocity vf as the edge travelling velocity
relative to the gas. Thus, for the present flame hole problem, vf = −ṙf + λrf . The
edge-flame propagation velocities against the hole radius rf for cases A–D are shown
in figure 9. The corresponding propagation velocities of straight edge flames, vf ∞
(see table 1), are marked in figure 9 as dash-dot lines. Pantano & Pullin’s (2003)
prediction of edge flame velocity, a direct differentiation of (5.1), vf = 3.15991/rf ,
is also plotted as the dashed line. It is evident that when rf is sufficiently large, the
curvature effects of the flame hole are weak and the edge-flame propagation velocity
approaches the value of the corresponding straight edge flame, vf ∞. However, with
decrease of the hole radius, the curvature of the hole edge will reduce the heat
losses and thus gradually enhance the edge-flame velocity. When rf becomes of the
order of the edge flame thermal thickness (O(1) in present formulation), all flame
elements on the hole edge interact by overlapping of their preheat zones. This flame
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interaction leads to a substantial increase of the edge flame velocity. Qualitatively,
this acceleration mechanism is similar to that of the head-on collision of two planar
premixed flames (Chen & Sohrab 1995; Lu & Ghosal 2003), except that the focusing
effects of a flame hole enhance the acceleration further.

Now let us go back to the discussion of the critical hole radius. According to the
definition of the critical hole radius, we have vf (rc) = λrc. Hence, the intersection point
of the straight line vf = λrf and the corresponding vf (rf ) curve determines the location
of the critical hole radius rc, as marked by the circle symbol in figure 9. When the strain
rate is very small, rc is large and vf ≈ vf ∞(λ), so that rc ≈ vf ∞(λ)/λ, which is plotted
in figure 4 as open circle symbols. It can be seen that with the increase of the strain
rate, the critical hole radius obtained in this way gradually deviates from the directly
calculated results (marked by bullet symbols in figure 4) because of the acceleration of
the edge-flame velocity. The limiting value of rc when the strain rate approaches the
extinction limit λE is of interest. This is determined for a number of values of λ in the
range 0.05 � λ < λE in the manner discussed earlier and a fourth-order polynomial fit
is used in figure 4 to obtain rc close to the extinction limit. It is seen from figure 4 that
the critical hole radius at the extinction limit, λE , is a finite value rc ≈ 2.7. This indic-
ates that regardless of the strain rate, as long as a diffusion flame exists, it cannot be
destroyed by making an infinitesimal extinction hole in it. This is in agreement with the
inference of Buckmaster & Jackson (2000) in the absence of a straining velocity field.

6. Circular flame disks on a stoichiometric plane
Compared with the flame hole problem, the effects of disk curvature and counterflow

velocity field are reversed for a flame disk. As before, we begin with a study of the
topological structure of the flame disks.

6.1. Flame topology

Figure 10 shows the evolution of an expanding flame disk for case B . After a short
transient time, the initial small flame disk evolves into a flame ball that expands like
a spherical expanding front. Because of the effects of the mixture fraction gradient
in the lateral direction, the expansion velocity of the flame ball is not isotropic – it is
fastest on the stoichiometric plane and slowest along the symmetry axis. As a result,
the flame ball gradually evolves into an ellipsoid which is composed of partially
premixed flame fronts. The lean and rich burning flame elements leave behind excess
oxidizer and fuel respectively to cause an accumulation of heated fuel and oxidizer
inside the ellipsoid. These residual gases come together at the stoichiometric plane and
establish a diffusion flame. With further expansion of the flame surface, the partially
premixed flame fronts propagating into the fuel and oxidizer become weaker because
of lack of fuel and oxygen, and soon the ellipsoid evolves into an annular triple flame
propagating outward and trapping an expanding diffusion flame inside. Qualitatively,
this process is very similar to ignition from a point source in a non-premixed turbulent
two-dimensional flow described earlier by Domingo & Varvisch (1996).

For large strain rates, as in the previously discussed flame hole problem, the triple
flame structure is replaced by a blunt edge (cf. figure 6).

6.2. Dynamics of flame disks

The phase diagram of flame disks for cases A–D is given in figure 11. It is evident that
corresponding to each strain rate, there exists a critical disk radius rc that separates
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Figure 10. Temporal evolution of isocontours of reaction rate of an expanding flame disk
for case B (cf. figure 2) – cross-sectional view.

the expanding and shrinking branches of the phase curve. The critical disk radius
against the inverse of the strain rate, determined by using the same method as before,
is shown in figure 12. It is seen that rc decreases with decrease of the strain rate and
reaches its minimum rcmin

= 0.83 at the ignition limit λI . This gives the minimum flame
disk radius below which a counterflow mixing layer cannot be ignited. As noted in
§ 6.1, for relatively small strain rates, the expansion of a small flame disk in a mixing
layer corresponds to the after-transient stage of ignition by a point energy source.
From a general point of view, the small flame disk may also be thought of as a planar
source. It is known that for these kinds of ignition energy sources, point or planar,
there exists a critical energy value such that the initial flame kernel could evolve to a
self-propagating flame only if the energy released by the source is greater than this
critical value (see Vázquez-Espı́ & Liñán 2002). In this sense, the critical disk radius
rc may be inherently related to the critical energy of the ignition source.

The edge-flame velocity for a flame disk now takes the form vf = ṙf − λrf . The
edge-flame velocities plotted against the disk radius rf for cases A–D are shown
in figure 13. The corresponding straight edge-flame velocities, vf ∞, are marked by
dash-dot lines. It is seen that for different strain rates, the general tendency is: vf

gradually decreases from vf ∞ at infinity with decrease of the disk radius, and when
rf is of the same order as the edge-flame thickness (O(1)), vf decreases sharply until
eventual annihilation of the flame disk. Compared with the flame hole problem, there
are no upstream flame interactions in this case. Therefore, it is expected that the



Flame holes and flame disks 303

0 2 4 6 8 10
–4

–3

–2

–1

0

1

2

C D

A

B

Instantaneous hole radius, rf  (t)

E
dg

e 
tr

av
el

li
ng

 s
pe

ed
, r

f  
(t

)

Figure 11. Phase diagram of flame disks: ——, expanding regime; – – – – –, shrinking regime.
Arrows indicate the disk edge travelling direction.
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increasing curvature effects will play a major role in the acceleration (in the negative
direction) of the edge-flame velocity, caused by the increasing heat loss rate.

7. Conclusion
A numerical investigation of flame holes and flame disks in a laminar axisymmetric

counterflow configuration is presented. The time-varying topological structure of the
flame edge is described and the dynamical behaviour of edge flames in the shrinking
and expanding processes of flame holes and flame disks is investigated.

It was found that for both flame holes and flame disks, there exists a critical
radius rc, which is an unstable bifurcation point and separates the shrinking and
expanding flame hole (disk) regimes. For a flame hole (disk), the critical radius
increases (decreases) monotonically with decreasing of the strain rate within the
interval formed by the extinction and ignition strain rates, and reaches a finite
minimum at the extinction (ignition) limit. This implies that a mixing layer cannot
be ignited by an infinitesimal energy source, nor can a flame sheet, once established,
be quenched by poking an infinitesimal extinction hole on it.

In the phase diagram, it was found that for a given strain rate, the phase curves
that begin from different initial radii, after a short transient, all collapse to two
unique enveloping branches of a smooth continuous phase curve. This indicates that
an edge travelling speed defined as a function of hole (disk) radius, strain rate (or
equivalently, Damköhler number) as well as other relevant combustion parameters
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(such as the Zeldovich number etc.), is a meaningful concept not only for shrinking
flame holes and shrinking flame disks (as noted by Buckmaster & Jackson 2000), but
also for expanding flame holes and expanding flame disks. Corresponding to the edge
travelling speed, the edge-flame velocity vf is also a smooth continuous function of
radius and strain rate in the entire range of hole (disk) radius 0 < rf < ∞. Edge-
flame velocity vf approaches the corresponding propagation velocity of a straight
edge flame when rf goes to infinity and tends to very large positive and negative
values for flame holes and flame disks, respectively, when rf approaches zero. For
flame holes, it is found that the edge-flame velocity is essentially proportional to the
inverse of the hole radius in the final collapsing stage, except when the strain rate
is within a short interval that is close to the extinction limit. The flame interactions
caused by overlapping of pre-heat zones are mainly responsible for this acceleration
mechanism, and it is further enhanced by the focusing effects of the continuously
increasing hole curvature. For flame disks, the acceleration (in the negative direction)
of the edge-flame velocity is mainly caused by the increasing heat loss rate.

The effect of heat release on two-dimensional isolated triple flames was numerically
investigated by Ruetsch et al. (1995), which was followed later by an analytical study
by Ghosal & Vervisch (2000) using activation energy asymptotics. The simulation
results of Ruetsch et al. (1995) showed that thermal density variations affect the
flow structure around the flame, with the result that the propagation velocity of
the triple flame is increased. In fact, the triple flame can actually propagate faster
than the corresponding stoichiometric planar flame, a somewhat unexpected result.
For the current flame hole and flame disk problem, when the hole (disk) radius is
large enough, the curvature in the stoichiometric plane is not significant and the
results for isolated triple flames with heat release mentioned previously should be
recovered. The more interesting situation arises as the hole (disk) radius shrinks. In
this case one expects a radial outflow of gas due to thermal expansion and deviation
of the streamlines in the vicinity of the edge would also result in modification of the
mixture fraction ahead of the edge flame. This should alter the dynamics of collapse
in an essential way. The simulations presented in this paper do not take this effect
into account, and are therefore qualitatively applicable to situations where density
variations are negligible; for example if the fuel and oxidizer are greatly diluted with
an inert species.

This work was supported by the National Science Foundation under grant No.
CTS-0121051. We also thank Luc Vervisch for providing the original code which we
modified to perform the numerical simulations.
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